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ABSTRACT
By modelling a picture as a two-state Markov field, MAP estimation
technqiues are used to develop suboptimal but computationally trxactable
binary segmentation algorithms. The algorithms are shown to perform
well at low signal to noise ratios, and analytical procedures are developed
for estimating the Markov field transition probabilities. In addition,
extensions of this approach to the multi-spectral and multi-region cases

are discussed.




I. INTRODUCTION

IR

The image segmentation process is a basic component of computer

vision systems, and as such, has received considerable attention in the

s AR

image processing literature. In this report we present a method for
segmentation of two intensity level monochromatic pictures in the pres-
ence of high levels of additive noise. Although we concentrate on this
limited class of images, our approach is extendable to a much more
general class of images and this is briefly discussed in Section VI of

the paper. In order to work with low signal to noise ratios, we have

exploited the spatial dependence of pixel intensity by modelling the
1 true underlying picture as a Markov field.

In the case of one dimensional digital signals the Markov field
model reduces to a Markov chain. Markov chain models for stochastic
processes have received considerable attention in the statistical liter-
i ature 1], {2], and found extensive application in the control, communi-
cation, and signal processing fields {3]-[6]. Estimation and detection

EL ' problems associated with random signals modelled by Markov chains can be

formulated as likelihood maximization problems where one wants to maximize

! the joint likelihood of the data and the Markov state sequence. Maximization

' of this joint likelihood is completely equivalent to generating what is known
as the maximum a posteriori probabilit. estimate of the Markov chain [18].
In the one dimensional case, this leads to ziagant and reasonably efficient
dynamic programming algorithms for computing the estimate which maximizes
the joint maximum a posteriori probability of the emtire data string (digital
signal) in a sequential manner. Unfortunately, this approach does not gener-
alize in a natural way to the case of two dimensional signals such as digital
images. As a result, this has somevhat hampered the use of MAP formulations

in image processing. The few exceptions [7]-[12) are discussed more carefully

below.
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Recent work by Kaufman and co-workers, [7], and Therrien (8], (9]
‘ | have also made use of Markov field models and MAP formulations. In {7] this
g approach was combined with reduced update Kalman filtering techmiques
| for image enhancement, while in [8] and [9]) it was combined with two-
dimensional autoregressive texture models for texture based segmentation.
However, the algorithm described in [7] and one of the algorithms

described in [8] and [9] fail to exploit the true spatial dependence
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imposed by the model. In particular they don't attempt to maximize a
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joint likelihood of all the data but rather the individual likelihoods

at points or in small regions within the image. This problem is partially

X
LN

overcome by a second multi-pass or iterative algorithm proposed in [8]
and [9]. However, the relation between the estimate obtained using this
approach and a true joint MAP estimate is unclear.

Cooper and Elliott [10]-[12] have applied MAP techniques to

boundary estimation in noisy images as well. Although boundary estimation
can be formulated as a one-dimensional signal estimation problem where

the independent variable is arc length along the boundary, it is inter-
esting to note that even in this case the two dimensional image data

necessitated the use of a suboptimal algorithm.
’ In this report, we have taken a very simple Markov field model, and

have developed an algorithm which approximates the behavior of an optimal
sequential estimation algorithm. It makes use of two stages of dynamic
5 ) programming. In the first stage a "generalized" dynamic programming

algorithm is applied to each row of the image. This ylelds a set of

i by v
Lt A

candidate segmentations for each row. In the second stage, a final seg-

2 mentation is '"pieced" together from the candidate row segmentations using

dynamic programming as well. The algorithe requires only a single pass
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over the image data, and the version for moderate signal to noise ratios
can be performed in a highly parallel fashion. The version which works
best at low signal to noise ratios requires a sequential raster proces-
sing of the image.

The paper is organized as follows. In Section II the problem of
interest is formulated and the image model is discussed. In Section III
the basic suboptimal algorithm is derived, while in Section IV, analysis
tools are developed to allow estimation of the Markov field transition
probabilities. Section V presents some modifications to the original
algorithm to improve its performance at low signal to noise ratios, and
extensions of this approach to a larger more interesting class of images
is given in Section VI. Finally, some concluding remarks are made in

Section VII.




I1. MODELING ASSUMPTIONS AND PROBLEM FORMULATION
Let a digitized monochromatic picture be modeled as an (Nlﬂz) matrix
j B with components, b 15’ representing the intensity or grey level of pixel
# B (1,§). Although this model will be generalized in Section VI, initially

b,, will be restricted to take on only one of two values, ry and r,, Ty >

13
r,. Thus the pixels in an image can be classified into two sets sl and

EEETNCHS: S3h

i A

: 82 where
8; = {(1,9): b1y} (1a)
S, = {(1,3): bq"z} (1b)

It will be assumed that an observed image, G, represents a picture B
corrupted by a stationary random noise field W so that G=B+W or equiva-
lently, g 1j-bij+wij' The random variables wij are asaumed to be indepen-
dent, Gaussian, zero mean, and of known variance 02, denoted wu'N(O,oz).
In this report we consider the problem of segmenting the image, or
equivalently, generating estimates §1 and §2 of the sets 81 and sz. In
the context of the model for B, this problem can be phrased as a two set
classification problem where pixel (i,j) is assigned to §1 or §2 using

the noisy observation g 13° Since the conditional probability distribu-

tions
d t
Rlgyct |t es) = | (200") 2 exp((x-r ) %1207 ) tx (2)
3 k=1,2
» are assumed known, maximum likelihood classification techniques could be

‘ employed. This would result in a simple thresholding algorithm with
. pixel (1,]) assigned to 81 if gum and to S2 if 813— , where A-(r1+rz)12.
This method only works well if the signal to noise ratio S/N ] Alo > 2,

4,
where A r, rz.
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In order to derive a more robust segmentation procedure, it is

necessary to impose additional structure on B. Pixels in the set 81
" will be assumed to appear in connected subsets, or blobs, as illustrated
in Figure 1. This structure can be modeled by a Markov field. Assuming
the support for this field to be limited to a pixels four nearest neigh-
bors, this Markov process can be characterized by the transition proba-
bilities:
S P(b

14"k !® = P(byy=ry by ) 40P g oDy 4-1°P4 441)

- § dr g - (&)

This model is fairly general in nature, .'ie direction invariant, and can
be used to model a large class of clusters. Unfortunately, it is diffi-
cult to identify appropriate transition probabilities. In additiom,
optimal segmentation based upon such a model would be computationally
impractical. Thus in the section to follow, we introduce a number of
restrictions and approximations in order to arrive at a suboptimal but
computational tractable segmentation algoritlm based upon dynamic pro-

gramming concepts.
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| : III. SUBOPTIMAL SEGMENTATION
In order to motivate our suboptimal algorithm we first formulate an
optimal algorithm which maximizes the joint likelihood of the image data,
and the state of the Markov field assuming the transition probability
structure given by (3).

An Optimal MAP Formulation

Let § = {ﬁl,ﬁz}repreaent an estimate of S = {81,82}, and let &(-)

ﬁ% represent a log-likelihood function. The joint log-likelihood of § and
4
fg the observed data G can be written as:
& £(8,6) ~ £(6l®) + ¢® . (%)
‘ % The log-likelihood of the data conditioned on the segmentation S s
{ .
: 2(C|S) =c- = —l; (31j"1)2 - r —35-(gij-rz)2 (5)
' (i,j)eS1 20 (1,j)eS2 20
where C is a constant independent of the estimated segmentation S. The
log-likelihood of the estimated segmentation is
¢(§) = ¥ , P ..+ I , P . (6)
woed, U, W
Combining (4), (5), and (6) yields
2 1 2 1 2
£(5,6) = & (foP,.. - —5 (g,,~r,)) + T  (fmP, ., -—5 (8;,~7,)")
3 Aes, B2 U (,ed, B2 g% TH 2
i' (&)
f3 For optimal segmentation (7) would have to be maxi-
éi mized over all possiblesegmentations§. Even if appropriate transition
:?? probabilities could be identified, maximization of (7) is computationally

impractical since it cannot be maximized in a sequential manner. In
order to derive a computationally feasible algorithm £(G,S) will be
approximated by a function £(G,8) which can be maximized by processing
the observation matrix G in a sequential manner. It might be noted that
the log likelihood (4) differs from the likelihood traditionally used for

MAP estimation by only a term which is independent of §. For the latter one

would use 2(8/G) = 2(c/S) + () - 2(C).




A Suboptimal Likelihood Function
To derive the approximation i(G,ﬁ) we will restrict the Markovian

Hy

dependence of b,, to one side. In particular we will assume

i3
Use of (8) in (7) would still require sequencing through the image in

P

two directions simultanecusly for maximization. Since no efficient

Gy
)
Wy
S
=
by,
%

algorithm has been formulated for such a maximiration an additional

simplifying approximation will be made. In particular, we will approxi-
& i
“j mate Pijk by Pijk wvhere
7; Poge ™ Royx Cygx (%a)
Cygp = Plbyy = mylby g ) (9b)
! Rigk ™ P(bij - rklbi,j-l) (9¢)
Rijk represents a transition probability from the preceding pixel in
the same row and c:ljk represents a transition probability from the pre~
ceding pixel in the same column. In the next section we will present
some methods for estimating Rijk and C 15k from a priori knowledge of
‘ﬂ image properties. It might be noted, however, that if one starts with
'3
- knowledge of the probabilities P 13k’ R:I.jk and cijk can be calculated
recursively. Using (9) we can define (6, 8) by
1(6,8) = 1y(6,8) + L (5) (10a)
= - 1 2
£.(G,8) = I (2R, . -—5 (g,,-1)°) (10b)
R (i,j)csl 1)1 202 1 "1
+ r (mniﬂ - ——15 (313"2)2)
(i'j)esz 20
1 (8) = I nC,.. + I _ nC (10c)
¢ el M1 g,pes, 12

SRS AT TR g g




Thus by using (9) we have decomposed our likelihood into two components.
The first, ;'R’ contains the image data and the row transition probabili-

ties, while the second, i

c’ contains only the column transition probabili-

ties.
Suboptimal Algoritim for Maximization of %(G,$)

In order to use computationally efficient sequential algorithms for
estimating § it will be necessary to maximize theapproximate likelihood

(10) in a suboptimal manner. In order to explain the algorithm {t will

be helpful to introduce some additional notation. Let

G(1,J) 4 first J elements in ith row of G |
§(1,7) = {§1(1,J).§2(1,J)}

8 subset of § containing first J pixels in row i of image.

We can then write

Our algorithm consists of two stages.

Stage 1: For each row 1, 1 <1 < Np ve calculate the M row sets

§= v §(1,N2)
1=1
and
y

| 22(6,85) = 1';51 ER.(G(i,Nz),S(i,Nz)) (11a)
B . 1 2

: £ (G(1,N),S(1,N,))) = ¢ (2nR -—= (g,.-r,)")

;, R 2 2 (1,Pe8,(1,N,) M1 2 UL

1 2

2 + & (2nR - = (g,.,-r,)°) (11b)
" (i.j)esz(i.ﬂz) 132 202 iy 2

4
-
13
3
13
¥

§-(1.ll2), 1 < = < M, vhich yield the M largest values of ik(c(i.nz).éu.uz)).

Observe from (11) thac

2(6(8,1),8(1,3)) = E(6(1,3-1),8(1,3-1)) + i(s, ) (12)

e A e N ™ e e o - chihe e

-~

D A e
K I ol

-

1Y . NN




S
=4

2 1 2
where z(gn) - Zank - -;0—2~ (gu-rk) » for k=1 or k=2 depending upon
whether pixel (1,J) 1is assigned to set §1 or §2. Recursion (12) in con-

Junction with the principle of optimality [13), imply the existence of a
forward dynamic programming algoritlim for finding the estimate §1(1,Nz)
which maximizes (11b). This type of dynamic programming algorithm is extended
in a straight forward manner to generate the M most likely sets §-(1,N2),

1 <m <M. A detailed description of the algoritim can be found in Appendix A.

Stage 2: Given the sets §m(1,N Z1<1 <N ,1<m<M, we calculate
Stage Z: 2 1= m=<

1 ’
our complete estimate $ as

N
1 My
§= U s (1,N,)
i=1
A N
where the sequence of sets {S (:l.,Nz) } jm) DAXimize
Y
2(G,$) = tl[zR(G(i,Nz).§m(i,N2)) + B8N (13)
{=
Define
- ~ I b had An
£26,5,1) = I R(6(,N,),8%(1,8,)) + 2, (8%(1,N)) (14)
1=1

so that i(G,é) = i(c,é,Nl). By observing that
16,8,1) = £6,8,1-1) + i (6(1,K,),8%(1,N,))
PEPY ]
+ 4, (87°(1,K,)) (15)
We can again apply the principle of optimality to develop a forward

N

Au'
dynamic programming algorithm for generating (S 1(1,82)} . The details

1
i=1
of this algorithm can also be found in Appendix A. At this point we make
the following remarks with respect to this algorithm.

Remark 1: In developing this algorithm we have traded off optimality in

order to reduce one two-dimensional maximization problem into (N1+1) one~

dimensional problems. To this point in our experimentation we have chosen
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N2
M such that 1 < M < B, Actually as M approaches 2 “ the algorithm converges
to an optimal algorithm in the sense that it generates an estimate § which
maximizes (10).

Remark 2: This algorithm is attractive computationally since the time

consuming Stage 1 is ideally suited for parallel implementation, where

Nl processors simultaneously process each row. Furthermore the amount of
memory needed to store the Stage 1 results needed for execution of Stage 2
are modest. Each partition §m(i,N2) can be stored as a simple bit string

of length N, where a one in position j implies pixel (1,j) is assigned to

2
set S. and a zero implies pixel (1,3j) is assigned to set §2. Thus for

1
each row of the image we need to store M bit strings of length N2 and M
numbers corresponding to the value of ZR(G(i,Nz), §m(i,N2)).

Figures 2 and 3 give examples of the algoritims performance in finding
an ellipse imbedded in noise such that (rl-rz)/o 4 A/c = 2 and 1 respec~

tively. The results are compared with a simple thresholding algorithm.

For these simulations we chose M=1,4, and 8, and we used the transition

probabilities
T 1f pixel (i,j-l)e§k
Rig ™ 4) (16a)
- ‘ 1-T otherwise
; T 1f pixel (1—1.j)s:§k
. Cpp { (16b)
! 1-T otherwise

where T=.95. This choice for R k and C1jk imply both stationarity and

1]
E M B symmetry in the 1 and j directions. Methods for choosing T are discussed
in the following section. Observe that the algorithm as given above, is

subject to burst type errors where strings of pixels are misclassified.

e - Tt 3
= - O SN g ARSIt 3 . |




This is a common attribute of algorithms which estimate Markovian pro-
cesses using meximum 1likeiihood techniques. Fortunately these type errors
are easily compensated for using simple post-processing algorithms. This
and other improvements to the basic algorithm are discussed in detail in

Section V.
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IV. ALGORITHM ANALYSIS FOR PARAMETER CALCULATIONS
In this section a simplified error analysis is presented. Using
techniques similar to those used in { 4], we calculate the probability

that a given incorrect row segmentation is more likely than the under-

lying true row segmentation. This probability is then used to obtain an
estimate of the paramater T in terms of certain a priori information
about the structure of B, Some examples of the algorithms performance

with various values of T will then be presented.

Simplified Error Analysis

We make the same assumptions about the transition probabilities cijk
and Rijk that were used for the simulations described in Section III. In
particular, we assume stationarity and symmetry so that (16) holds. Let
§(1,N2) - {§1(1,N2),§2(1,N2)} be an incorrect estimate of the true seg-
mentation S(i,Nz) ) {51(1’“2),32(1’N2)} of row i. Consider the probability

PE(i)’ that §(1,N2) is more likely than S(i,Nz). Using the stage 1 like-

1ihood function, iR('.'), we obtain
P,(1) = P(lnp(i,Nz).S(i.Nz)) > zR(c(i,Nz).S(i,Nz)))

£ pa) > 0
where

Q(D) & R (6(1,K,),8(1,K,)) ~ E(B(L,N,) ,S(1,K,))

Using (11b) and expanding the quadratic terms, Q(1) can be rewritten

as
Q) = & (tn R, + ‘li (28, .1,-r2))
(1,§)eS,(1,K,) 17,02 R
1 2
+ z (’rn R + — (28 T -r ))
(1,3)e8,(4,N,) 132 © , 2 "Py2 2
1 2
- 1 - (n R, +—5 (28, 1,-1,))
(1,1)es;(4,8,) 131 7,2 P11
1 2
- L (ln R1j2 + ;0-}- (281jr2_r2))

(1,j)esz(i,N2)

(17

(18)




In these expressions R will take the value T if pixels (1i,j-1)

13k
and (i,j) are placed into the same set, and will take the value (1-T)
otherwise. Let t(i) be the number of times pixels (1i,j-1) and (4,J)
are classified differently in S(i,NZ), and let t(1) be defined analogously

for §(1,N2). 1f §k(i,N2) is defined as the set of pixels contained imn

§,(1,§,) and not in S, (1,N,), i.e., §,(1,N,) = §k(1,n2) - 5, (1,K,) then

Q(1) can be simplified to

1 2 2
Q(d) = —= [ L (ri-r, -2(r,-r,)g,.) +
202 (1sj)€§2(i,N2) 172 172771 (19)

2 2 - T
(1,8 Ny 21 2 1-T
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for §(1,n2). Let ﬁk(n be the number of pixels in the set 5 (1,N,).

Then, conditioned on the knowledge that s(i,Nz) is correct

2
QD) - N(ii—z— @y (D) + 5,(1) + (D) €/, DIE D) + 5,1

¥y (20)
% Thus
) ,
: () = [ 0 W exp(- L) (21a)
; a(i)
where
- - 1/2
(n)(1)+, (1)) o £ (4)-€(4) T
a(1) = A -& (L)  (21b)
2 ? A (51(1)52(1))1/2 1-T

As expected, PE(i) goes to zero as the signal to noise ratio,
A/a, goes to infinity. The contribution of the transition probabilities
to PE(i) diminishes with increasing signal to noise ratio, and the tran-
¥ sition probability term only influences PE(i) vhen t(1)#t(1), or when

™~ the number of state changes in S(1,N,) 1s different than the number in

S(1,8)).

Markov Parameter Determination

Using (20) and (21), bounds on the parameter T can be deter-
mined. These bounds can be arrived at by looking at two
limiting cases. One case is when T is very large so that

the probability of changing states is low. Here it would be expected

G o o B N T R
A SR 2 M

that an object, a connected set of pixels in either S_ or Sz, might be

1
deleted from the estimated segmentation, §, due to the low probabil-

1 to S2 or 32 to Sl. The other

extreme is T very small which makes the probability of changing

ity of any state transistions from S

states larger. In this case a number of extraneous transitions might
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be included in §. This situation produces what might be called 'false
objectd, and will be considered first.

For the first case, let §(1,N2) be such that all pixels in a connected
set, Tl, in row 1 are misclassified. Furthermore, it will be assumed
that the set Pl is such that the misclassification causes §(1,N2) to have
2 state transitions more than S(i,Nz). An illustration ef such an occurrence
appears in Figure 4a.

If the set T;is n; pixels long, then the probability that §(1,N2)
will be more likely than S(i,NZ) is given by (17) with

Efliff A oy 2

a(l) = —5— ) + (D -n—17-2-zn('r/1-'r) (22)
Thus to assure that PE(i) is siall, i.e. PE(i) < g, T should be picked
such that a(i) is greater than or equal to some value B8(c). From (22 )

this 1s equivalent to requiring

T > exp(B(e)x-x2) (L+exp(B(e)x-x2)) (23a)
where
o
n
1
x = — |%| (23v)

Note that the left hand side of this inequality is maximized at

x = B(e)/2, thus

2 2
T > exp(BEL) / (1rexp BEL) (26)

will guarantee that

Pe(1) < [ (2w
g(e)

-1/2 exp(~-82/2)ds = ¢ (25)

For example, if we set €=.01 then B(€) = 2.33. This will require that
T > .80 which is quite reasonable.

If (22) 1s minimized with respect to n,, we see that given




Q (%) and T, the most probable length of a false object is approximately

n* = 4en(1/1-1)(2)’ (26)
Also, it should be noted that the event of the row segmentation
§(1,u2) being more likely than S(i,N,) is
dependent only on the pixels in Ii. Therefore one estimate for the
number of possible independent sites for such a set to occur might be
(Nl Nz)/(nﬂ*l).* Since the corrupting noise was assumed white, the

number of such sets, Tl,in the segmentation, S, can be similarly estimated as

Ny = N NP fpkal) (27)

In practice, however, this estimate seems to be consistemntly low by
a factor of approximately four.

Thus, given an upper bound on the probability of § containing a
false object in any givem position, a lower bound on T can be obtained.

Once T is chosen both the most probable lemgth of, and the expected

o . number o©f such sets can be estimated by n* and 4“1 respectively.
. In order to obtain an upper bound on T the second case must be
. congidered. Here, it is assumed that an entire connected set of pixels,
’? Pz, in Sk(i,Nz), k=1,2, has been falsely classified in §k(1,N2). By
i% entire, we mean that the pixels immediately to either side of T, are
_% not elements of Sk(i.Nz). In this case §(1,N2) has two fewer state
%%f transitions than S(i,Nz). This case is illustrated in Figure 4b.
’ ‘; Again, it is assumed that S(i,Nz) includes no other errors and
that T, isn,pixels long. Ia this case the probability of an error PE(i),

fn*+1 is used rather than n* to insure each connected set is separated

from the others by at least one pixel. Thus, each "false object"

-,W.-‘,*v LRSS

. ;L will contribute 2 extraneous transistions to t(i).

-~
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as defined by (17) and (18), is given by the integral (2la) where

I
i JPTY o, 2 T
a(l) = - (;) - ('K) ';21; lﬂ(ﬁ) (28)

If we use similar arguments to those of the previous case, in order for
Pp(1) < €, we would require a(i) > B(e). Using (28) in this case yield
the upper bound on T:

b
B2 A2 "2 4 N2 4,2
T < exp(l‘ (o) - B(€) > (‘;))/1+exp(7-(;) - B(¢e)
and (%) yields

X
I
4 & @9

Minimization of (29) with respect to n,

2 2
T < exp(- By (rrexp(- By (30)

This implies T<.5 which is inconsistent with the constraints imposed
on T by the lower bound (24) derived from analysis of case 1. More
importantly, it is inconsistent with our basic picture assumption of
relatively large region clusters.

This problem can be overcome by assuming specific values for the
signal to noise ratio, (A/c), and for the length n, of the misclassified

pixel string T In this case 1f T is chosen to satisfy (29) for a

2°
specific ¢, then any string of length greater than n, would have lower
error probability. Tables 1 and 2 give the upperbound on T as defined
by (29) for values of ¢ ranging from .16 to .02 and values on n, ranging
from 4 to 40. In Table 1 A/o=1 and in Table 2 A/o=2,

Figure 5a shows a test image containing ellipses, triangles and
circles with different orientations and sizes, and Figure 5b shows this
same image with sdditive Gauessian noise such that A/o = 1. The results
of applying our algoritim with T=.5, .8, .9, and .95 are shown in

Figures 5c-5f, Note that for small values of T many additional state
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transitions occur and false objects ‘appear. On the other hand, large
values of T tend to suppress state transitions causing case 2 situations.
L ! Figures 6a-6c show the algorithm performance at A/c = 2 and T = .95 and
.5. With T = .5 our algorithm reduces to maximum likelihood thresholding |

as discussed in Section II. }
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DN .16 .10 .05 .02
4 .50 .43 .34 .26

6 .57 .48 .37 .27

8 .64 .54 .42 .29

: 10 7 .61 .47 .32

; 12 .78 .68 .54 .37
14 .84 .75 .60 .42

15 .86 .78 .64 45

\ 20 .9 .89 .79 .60
| 25 .98 .95 .89 .75
i 30 .99 98 .95 .87
35 .997 .99 .98 .9%

40 298 .997 .99 .97

i Table 1, Upperbounds on T determined from Equation (29)

NE .16 .10 .05 .02
1 .5 .43 .34 .26
2 .64 .54 .42 .29
3 .78 .68 .54 .37
& .88 .81 .67 .48
6 .97 .94 .88 .73
8 .99 .99 .97 .91

10 .999 .997 .99 .97

Table 2. Upperbounds on T determined from Rquation (29)
with Ao = 2,
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V. MODIFICATIONS

As is apparent from our previous examples, the basic algorithm as
described in Section III performs well for signal to noise ratios of 1.5
or greater. However, its performance is disappointing at signal to
noise ratios near or below 1.0. An obvious approach to improving per-
formance would be to increase M, the number of row alternatives stored
during stage 1, to a value greater than M=8, Unfortunately, as is dis-
cussed dbelow, this is impractical. Consequently, we present two alterna-
tive, but more practical modifications, which when applied jointly yield

reasonable performance at signal to noise ratios of 1 or below.

Effects of Increasing M

As can be seen in Figures 2 and 3, as M increases algorithm perfor-
mance does improve. However, certain row estimates experience little or
no improvement. This is especially true in the case A/o = 1. To under-
stand the effect of increasing M one must realize that stage 2 of the
algorithm can not generate a reasonable picture segmentation if the true
row segmentation, or a reasonable estimate, is not contained in the set
of candidate row estimates generated during stage 1. With this in mind
we considered three troublesome rows in Figure 3c, namely rows 11, 27,
and 32, extracted them from the image, and applied the stage 1 algorithm
to them with M=64. The 20th and 12th most likely alternatives for rows
11 and 13 respectively did yield an improved estimate of their true
segmentations. However, no such alternative appeared for row 27. This
implies that improved performance is only possible if M is increased
substantially. This in turn would lead to impractical time and storage
requirements. As a result we have considered two other alternative

modifications. The first is a simple post-filtering operation. The

T S I W o e < X NI
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second involves a modification of stage 1 of the algorithm.

Post-Filtering

The errors incurred by the algorithm are generally "burst" type
errors where a sequence of pixels in a given row are misclassified. Thus,
one way to remove the effects of such errors is to post-filter the re-
sulting binary image representing the segmentation. There are many types
of filters which could be used, and we show the results of applying one
simple type. We reassign the state of a pixel if the majority of the
pixels in a 5x1 window centered on the pixel are in a different state.
This is just a special case of a median filter. The result of applying

this filter to the binary segmentation shown in Figur( Sf is given in
Figure 7a, while Figure 7b shows the results of applying the filter to

Figure 6c. For purposes of comparison we have also filtered the segmentations
shown in 5¢ and 6b which were obtained by simple thresholding. Since the
errors in these images do not exhibit any directional bias, we used a (3x3)
window. As can be seen by comparing Figures 7c and 7d to 5¢ and 6b, respec-
tively, the approximate MAP algorithm produces significant improvement at
A/a=1 and only minor improvement at A/o = 2, Thus the additional complexity
of the MAP algorithm can only be justified when working with signal to noise

ratios lower than 2.

Non-Parallel Algorithm

Although post-filtering produces significant improvement in perfor-
mance when compared with the output of the basic algorithm, one wc.uid
still prefer improving the performance of the basic algorithm before
post-processing. In view of the discussion above, cur goal is to improve

the list of candidate row estimates generated by stage 1, This can be
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done by using information from the previously processed rows. Unfortun-
ately, to do this we must remove the parasllelism from the algorithm and
process the rows sequentially.

In this wodified approach it makes more sense to interweave stages 1

and 2 of the algoritlm. That is, after processing row i with a modified

Compvry £

version of the stage 1 algorithm to obtain the most likely candidate
segmentations, we then perform one step in the stage 2 dynamic programming
algorithm. At this point we have M distinct binary segmentations stored

. for the sub-image consisting of the first i rows.
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The first stage algorithm is modified to make use of the dynamic
programming solution for the previous 1-1 rows as well. In particular
we now find the M candidate estimates which yield the largest values of
the modified row likelihood

2HR(G(1.N2).S(1,N2)) - lR(G(i.Nz)S(i.Nz))

(31)
+ z fn H,, + L in H
98,8y Y @,nes,aN) M2
vhere ER(-) is given by (11b), and
- *
TR if bij = bi—l,j
“13' (32)
l—TR otherwvise
The term Sij is the state estimate for pixel (1,j) and b:-l 3 is the
?

most likely state estimate for pixel (i-1,j) after running both stages
of the algorithm on the first i-1l rows of the image. 1In this case we
have incorporated information about our segmentation of the previous
rows in making decisions regarding new rows. In particular we penalize
state changes in the vertical direction as well as the horizontal direc~
tion when performing our initial row segmentations. Observe that the
addition of the Hij terms in (31) does not change its recursive nature
and hence dynamic programming can still be used to maximize (31).
Finally we point out that before performing the stage 2 algorithm

on a given row the H,, terms are subtracted out of the row likelihoods,

1]
iMR(-), reducing it back to the form of ER(-) given in (11b). This
assures that the final image likelihood is consistent with our Markov
field model.

Estimating T and TB

In order to implement this modified algorithm we must estimate
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The approach taken is similar to that

appropriate values for T and TR.
used for the original algorithm and the details can be found in [11].
However, we briefly outline the necessary changes.

To estimate T alone we considered two types of row errors. To
simultaneously estimate the two parameters T and TR we consider three
error types. Case 1 is 1identical to the first "false object" case used
in the earlier analysis. Case 2 corresponds to the probability of
missing the top row of an object while Case 3 consists of the probability
of a protusion of one pixel width extending from an object. If PEl' PEZ’
and PE3 are defined as the error probabilities for each of these cases
reasonable values for T and TR can be determined by minimizing

P = Y Pg1 * YoPpo *+ Y3Pg3 . (33)
The positive parameters Yl’ Yo» and 73 are adjusted depending upon what
type of error is more reasonable in a given application. In our case
we were most concerned with eliminating "false objects.”

Thus we used 71-100 and Y% = 1. For A/o = 0.8, minimization of (33)
= .55, P_, = 6.6x10"" = .81 and P, = .07.

R E1 » Ppy 3
Interestingly, as one would expect with this algorithm, PEz is large.

ylelded T=.83, T

That is there i{s a high probability of not estimating the first row of objects.
Figure 8a shows the image of Figure Sa with additive noise such that

A/o = .8 while Figure 8b shows the result of applying the modified algo-

rithm to this image with T and TR as determined above. Figure 8c is the

post filtered version of Figure 8b. Figure 9a shows the result of apply-

ing the modified algorithm on image 5b which has A/o = 1. In this case

using the above analysis procedures we chose T = .83, TR = .6. The corre-

4 .76 and P, = .02.

sponding error probabilities were P » Ppo = E3

Bl " 3.4x10

Figure 9b is the post-filtered version of 9a.

=y — s T o e o cemm - — ————— e e -



VI. EXTENSIONS

Although in this report we have concentrated on the simple uniform
intensity binary segmentation problem we point out that the approach is
easily extended,

First, if one were interested in the colored or multi-spectral

case, one could model the image as a set of intensity matrices {GZ-B£+H2)2_1

where each matrix corresponded to the intensity level of a primary color
or of a given spectral band. In this case a region would be characterized

L,\L
by the set of intensities {rk}k-l'

Next observe that by increasing the number of allowable Markov states,

the multi-region case can be handled. If the image had K regions then a
K
segmentation would be characterized by S = U Sk.
k=1
Combining these two extensions, leads to the following generalization

of (5)
o 2(5,{6,1) = 2(5) + 2({c,}[®) (34)
o~ L K
I ; ME D = -2 [T (1. g rpD) (35)
! g=1 k=1 (i,j)esk 20
" K
I L(8) = kfl (i,j)eék Psk (36)
} | Using (34)-(36) estimation algorithms similar to those described earlier
‘ can be developed.
& ;i Finally we point out that this approach can be even further extended

to consider textured images where region textures are modelled stochas-~

RN

tically using probability demsity functions or dynamical models as in

i

[8], [9]. In this case the state space of the Markov field must be

e

modified. That is, rather than characterize a region by a simple feature

such as intensity, one could define it to be a parameter vector associated

i B 5 with the texture model.




VII. CONCLUDING REMARKS
This paper presented a new segmeutation algorithm based upon a
simple Markov field model for an image and MAP estimation techniques.
The two-dimensional nature of the image forced us to consider a suboptimal
algorithm for actual segmentation. We also presented some analytical

techniques for estimating key algorithm parameters. Some areas for future

work include more careful study of the extensions outlined in the previous
section. In addition it would be of interest to explore other approxima-
tions to the true MAP estimate and compare performance of these alternative

approaches both experimentally and analytically.
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APPENDIX A

This appendix describes the dynamic programming techniques necessary
for implementation of the Stage 1 and Stage 2 algoritims discussed in
Section III. We first present a basic forward dynamic programming algo-
rithm, of the form popularized by Bellman [13], for segmenting a row into
regions, Qk, characterized by region intensities L and the Gaussian
noise model. Modification of this algorithm for generating the M most
likely segmentation (the Stage 1 algorithm) are then presented. Finally,
the Stage 2 algorithm is derived by simply changing a few of the defini-
tions introduced for row segmentation.

Forward Dynamic Programming for Segmentation of the ith Row of an Image

Preliminary Definitions:

Dy & - z—ii (8gymy)”

, T 1f k=i
T A af o
x 22
N &

Step 1: Set c=1

Dk(gil) k=1,...,K

Step 2: Set ¢ = ctl
c c-1
2= max (014D +m.), k=l,2,...K
o ke ¥ MK

Y;-I = maximizing value of j, k=1,...,K

Step 3: If c<N go to Step 2
" N
Step 4: Set ER(G(I,Nz),S(i,Nz)) = max zj
1<j<K

2

o = maximizing value of J




Assign pixel (1,N)) to set sp(i.nz)

Step 5: ¢ = c-1

Y Yp

Assign pixel (i,c) to set §p(1,N2)
Step 6: If c>l go to 5
Step 7: Stop.

The Stage 1 Algoritim

To generate the M most likely segmentations modify steps 2, 4, and

5 above to
Step 2°': 2:’" ;—nax(zg-l'" + "jk + ij), k=1,...,K
<j<K Mel,...,M
l<u<M
yﬁ‘l’n-maximizing value of § , kel,...,K
M=1,...,M
m-max(-) = mth largest .
N,
Step 4': IR(G(i,Nz)ém(i,Nz) = m-max(2,° ) , w=l,...,M
1<y<k 3
1M

‘pm-maxinizing value of j , m=l,...,M
Assign pixel (i,Nz) to set §nn(i,N2) , m=l,....M

Step 5': c=c-1
m c,m
=Yg
[

t ] vl’z’..l’u

Assign pixel (i,c) to set §m;(i,N2) s m=l, 0 M.
o

The Stage 2 Algorithm
The Stage 2 algorithm is a simple forward dynamic programming

algorithm, and as such, can be obtained from the basic row segmentation
algorithm by redefining the following parameters:

-~ ‘k

s ek

£ (8°(3,N,))

Dkd

ﬂ'kj
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K=8
N = Nl
In addition steps 4 and 5 should be redefined as:
Step 4": i(G,g) = max R.N
19
p=maximizing value of j
Assign row segmentation §p(N,N2) to §
Step 5": ¢ = c-1
c
(o] Yp

Assign §p(c,N2) to §

(TR Ny T i
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64x64 ellipse in additive Gaussian noise Figure 2b. Maximum likelihood threshold segmentation.

such that Afog = 2,

Figure 2a.

MAP segmentation with T=,95 and M=4,

Figure 2c.
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4

S({1,N

)

S(i,N.)

L

Figure 4a.

Ilntensity profiles for corract row segmentation S(i,N ) and
incorrect segmentation $(i,N ) for case 1.

S(i,Nz)

S(f.Nz)

Figure 4b.

Intensity profiels for correct row segmentation S(i, N ) and
incorrect segmentation S(i,N ) for case 2.
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170x170 picture containing two ellipses,
two triangles and four circles with radii

ranging from 2 pixels to 20 pixels.

Figure 5a.




MAP segmentation with T=,8 and M=8.

Figure 5d.

(equivalent to thresholding).

MAP segmentation with T=.5

Figure 5c.
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MAP segmentation with T=.5 (equivalent

to thresholding).

Figure 6b.

Picture 5a with additive Gaussian noise

such that Afog = 2,

Figure 6a.

Pt b

MAP segmentation with T=,95 and M=8,

Figure 6c.
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